Implementasi Metode K-Nearest Neighbor dalam Mengklasifikasikan Kesegaran Ikan Kuro Menggunakan Citra

Muslim Alamsyah, Muhammad Ainun Nadjib

Abstract


Kurofish (Eleutheronematetradactylum) is a type of fish that spreads throughout Indonesian waters, with different local names in each region. On the east coast of Sumatra it is known by the name of sukain fish while on the north coast of Java it is known as kuro fish. Freshness of fish is one of the benchmarks for consumers in choosing quality or good fish for consumption, because fresh fish is rich in protein and nutrients. Fish is also known to contain omega 3 fatty acids which are beneficial for brain growth, as well as calcium, vitamin D and phosphorus which are good for bones. However, the nutritional content contained in the fish may not be optimal anymore if it is consumed in a condition that is not fresh. Not only that, consumption of fish that is not fresh which leads to rotten conditions can make someone poisoned.

Fish freshness checks can be done through microbiological and chemical analysis, but this method is less effective because it requires a lot of manpower, is quite expensive, and takes longer. For traders, the level of freshness of fish is determined in the traditional way, namely by observing, holding and smelling the smell of fish, sometimes there is also something that escapes observation so that there are still fish that are not fresh.

To reduce these problems, the authors apply the K-Nearest Neighbor method in classifying the freshness of fish using images based on the color of the fish. By using the Kuro Fish type, using Matlab tools and in the results of the study using the K-Nearest Neighbor method with 40 training data and producing an accuracy of 100% and 16 test data with 7 correct data resulting in poor accuracy, which is 43 ,75%

Keywords


Kuro Fish, Citra, K-Nearest Neighbor

Full Text:

PDF

References


Ayu, K. (2019). Penerapan Image Processing Untuk Tingkat Kesegaran Ikan Nila (Oreochromis niloticus). JPHPI Vol.22 No.2, 229-235.

Carpenter KE and Niem VH.1998. The Living Marine Resources of The Western Central Pasific Vol.2. FAO Species Identification Guide for Fishery Purposes. Rome: FAO Fisheries Departemet.

Celvin, H. (2020). Penerapan Algoritma K-Nearest Neighbor Pada Klasifikasi Kesegaran Citra Ayam Broiler Berdasarkan Warna Daging Dada Ayam. ISBN 978-623-93343-1-4, 799-809.

Choras, R. (2007). Image Feature Extraction Techniques and Their Applications for CBIR and Biometrics Systems. International Journal of Biology and Biomedical Engineering , 6-16.

Defit, Bee. (2016). Aplikasi Penentuan Tingkat Kesegaran Ikan Selar Berbasis Citra Digital Dengan Metode Kuadrat Terkecil. JDC Vol.5 No.2, 122-130.

Genisa. (2001). Sebaran dan Kekayaan Jenis Ikan Dasar di Perairan Muara Sungai Digul dan Arafura. Puslit Oseanografi-LIPI , 89-108.

Indrabayu. (2016). Sistem Pendeteksi Kesegaran Ikan Bandeng Menggunakan Citra. Infotel Vol.8 No.2, 170-179.

Irfan, P. (2019). Deteksi Tingkat Kesegaran Daging Ayam Menggunakan K-Nearest Neighbor. ISSN: 1978-8282 Vol.12 No.2, 177-185.

Iswari NMS, W. W. (2017). Perbandingan Algoritma kNN, C4.5, dan Naive Bayes dalam Pengklasifikasian Kesegaran Ikan Menggunakan Media Foto. J Ultim , 7-114.

Mabrur, S. S. (2011). Pengolahan Citra Digital Menggunakan Matlab. Tulungagung: Informatika Tulungagung.

Motomura. (2004). Pertumbuhan Ikan Kuro (Eleutheronema tetradactylum Saw, 1804).

Munir, R. (2004). Pengolahan Citra Digital dengan Pendekatan Algoritmik. Bandung: Informatika Bandung.

Nuzarman. (2018). Identifikasi Kesegaran Ikan Berdasarkan Warna Mata menggunakan Algoritma Learning Vector Quantization (LVQ).

Rajashekararadhya, S. &. (2009). Zone based Feature Ekstraction Algorithm for Handwritten Numeral Recognition of Kanada Script. IEEE International Advance Computing Conference (IACC 2009), 525-528.

Salsabilah, K. (2020). Penerapan Ekstraksi Ciri Transformasi Wavelet Dalam Pembuatan Model Klasifikasi Kesegaran Ikan Selar. ISBN 978-623-93343-1-4, 771-784.

Weber & Beaufort 1922 dalam Fahmi.(2000).Klasifikasi, Ciri Morfologi dan Daerah Penyebaran Ikan Kuro.




DOI: http://dx.doi.org/10.53567/spirit.v14i2.246

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 ainun nadjib

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


 

Diindeks Oleh:



SPIRIT : Sarana Penunjang Informasi Terkini

Diterbitkan oleh Teknologi Informasi Institut Teknologi dan Bisnis Yadika Pasuruan
Alamat Redaksi: Jl. Bader No.9, Kwangsan, Kalirejo, Kec. Bangil, Pasuruan, Jawa Timur 67153
Telp/Fax: (0343) 742070 , Email : lppm@stmik-yadika.ac.id
Google Maps :  Klik Disini


 Creative Commons License
Karya ini dilisensikan di bawah  Lisensi Internasional Creative Commons Atribusi 4.0 .