KLASIFIKASI JENIS UMBI BERDASARKAN CITRA MENGGUNAKAN SVM DAN KNN

Afinatul Hasanah, Nur Nafi’iyah

Abstract


Abstract : Tubers are plants that can grow in the yard, low-lying areas, or highlands and areas that lack water. But not all people in Indonesia plant tubers. So that some people do not recognize the types of tubers. The purpose of this study is to classify tuber types based on texture features, shape features, and both texture features, and image shapes. The benefits of this research are in order to provide information related to the types of tubers. The algorithm used for tuber type classification is SVM and KNN. The types of tubers classified as cassava or cassava, sweet potato and taro. The dataset used in this study were 180 images, with 150 images as training data, and 30 images as test data. The results of the trial show, the classification of tuber types using SVM algorithm with 10% accuracy texture features, with 7% accuracy form features, and both 7% accuracy features. While the tuber type classification uses the KNN algorithm with K = 5, the successive accuracy values for texture features, shape features, and both features are 3%, 20%, 7%. And if KNN with K = 2, the successive value of succession in texture features, shape features, and both features, is 13%, 23%, 10%. The shape features here are: area, perimeter, metric, major axis, minor axis, eccentricity. And texture features, namely: average intensity values of grayscale, standart deviation image grayscale, contrast values, energy, correlation, and homogeneity. Keywords: tuber types, SVM, KNN, texture and shape features

References


Abdullah, Pahrianto. (2017). Sistem Klasifikasi Kematangan Tomat Berdasarkan Warna Dan Bentuk. Jurnal Sistem Informasi.

A. Hafis, M. Abrar, Andrie Safoean MK, Derry Alamsyah. (2016). Implementasi Metode R-HOG dan SVM (Support Vector Machine) untuk Smile Detection.

Agung Prayoga, Hilmy Abidzar Tawakal, Reza Aldiansyah. (2018). Pengembangan Metode Deteksi Tingkat Kematangan Buah Melon Berdasarkan Tekstur Kulit Buah dengan Menggunakan Metode Ekstraksi Ciri Statistik SVM (Support Vector Machine). Jurnal Teknologi Terpadu.

Aji Prasetya Wibawa, Muhammad Guntur Aji Purnama, Muhammad Fathony Akbar, Felix Andika Dwiyanto. (2018). Metode-metode Klasifikasi. Seminar Ilmu Komputer dan Teknologi Informasi, (pp. 134-138).

Arif Patriot Sri Pamungkas, Nur Nafi'iyah, Nur Qomariyah Nawafilah. (2019). K-NN Klasifikasi Kematangan Buah Mangga Manalagi Menggunakan L*A*B dan Fitur Statistik. Jurnal Ilmu Komputer dan Desain Komunikasi Visual, 4(1), 1-8

Frita Devi Anggraini, Sutojo T. (n.d.). Identifikasi Jenis Citra Cabai Menggunakan Klasifikasi City Block Distance dengan Fitur Bentuk sebagai Ektraksi Ciri. Skripsi

Kadir, A. (2013). Teori dan Aplikasi Pengolahan Citra. Yogyakarta: Andi.

Koswara, S. (2013). Teknologi pengolahan umbi-umbian. Research and Community Service Institution IPB.

M. Wahid Wahyu Kurniawan, Tri Dewanti Widyaningsih. (2017). Hubungan Pola Konsumsi Pangan dan Besar Uang Saku Mahasiswa Manajemen Bisnis Dengan Mahasiwa Jurusan Teknologi Hasil Pertanian Universitas Brawijaya Terhadap Status Gizi. Jurnal Pangan dan Agroindustri.

Mawaddah Harahap, Amir Mahmud Husein, Abdi Dharma. (2017). Identifikasi Tanda Tangan Dengan Kohonen SOM berbasis Principal Component Analysis. Seminar Nasional APTIKOM (SEMNASTIKOM), (pp. 333-337).

Prasetyo, E. (2011). Pengolahan Citra Digital dan Aplikasinya Menggunakan Matlab. Yogyakarta: Andi

Puji Utami Rakhmawati, Yuliana Melita Pranoto, Endang Setyati. (2018). KLASIFIKASI PENYAKIT DAUN KENTANG BERDASARKAN FITUR TEKSTUR DAN FITUR WARNA MENGGUNAKAN SUPPORT VECTOR MACHINE

Seminar Nasional Teknologi dan Rekayasa (SENTRA), (pp. 1-8).

Putra, D. (2010). Pengolahan Citra Digital. Yogyakarta: Andi.

Robert Burbidge, Bernard Buxton. (n.d.). An Introduction to Support Vector Machines for Data Mining. Computer Science UK.

Sutarno, Rouzan Fiqri Abdullah, Rossi Passarella. (2017). Identifikasi Tanaman Buah Berdasarkan Fitur Bentuk, Warna dan Tekstur Daun Berbasis Pengolahan Citra dan Learning Vector Quantization (LVQ). Annual Research Seminar (ARS), (pp. 65-70).

Yuita Arum sari, ratih Kartika dewi, Chastine Fatichah. (2014). SELEKSI FITUR MENGGUNAKAN EKSTRAKSI FITUR BENTUK, WARNA, DAN TEKSTUR DALAM SISTEM TEMU KEMBALI CITRA DAUN. Juti, 1-8

Zeni Dwi Lestari, Nur Nafi'iyah, Purnomo Hadi Susilo. (2019). Sistem Klasifikasi Jenis Pisang Berdasarkan Ciri Warna HSV Menggunakan Metode K-NN. Seminar Nasional Teknologi Informasi dan Komunikasi. Madiun




DOI: http://dx.doi.org/10.53567/spirit.v12i1.171

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Jurnal SPIRIT




 

Diindeks Oleh:



SPIRIT : Sarana Penunjang Informasi Terkini

Diterbitkan oleh Teknologi Informasi Institut Teknologi dan Bisnis Yadika Pasuruan
Alamat Redaksi: Jl. Bader No.9, Kwangsan, Kalirejo, Kec. Bangil, Pasuruan, Jawa Timur 67153
Telp/Fax: (0343) 742070 , Email : lppm@stmik-yadika.ac.id
Google Maps :  Klik Disini


 Creative Commons License
Karya ini dilisensikan di bawah  Lisensi Internasional Creative Commons Atribusi 4.0 .